TEMPERATURE FIELDS IN A PIPE WALL IN
THE CASE OF RADIATIVE HEATING AND A
SUPERCRITICAL WORKING-MEDIUM PRESSURE
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The problem on determination of the temperature field in the tube wall with nonuniform heat
flux along the perimeter at the external surface and heat transfer to the medium of super-
critical pressure at the internal surface is solved. The heat transfer coefficient to the
supercritical pressure medium depends on the heat flux at the internal tube surface, process
and design parameters. The results of calculations are compared with experimental data
and calculations by other methods.

Heat exchange with a medium at supercritical pressure in a radiatively heated pipe has certain dis-
tinctive features: first, the heat-transfer coefficient at high specific heats, i.e., for flow enthalpies 250
= if = 650 kcal/kg, depends on the heat flux, the average-mass velocity, the flow enthalpy, the pressure,
and structural parameters; second, radiatively heated pipes may not be heated uniformly over the peri-
meter of the pipe. These two facts significantly complicate a determination of the temperature fields in
the pipe wall.

Under these conditions, a calculation of the temperature fields in the wall by the procedure of [1]
neglects the nonuniform distribution of the heat-transfer coefficient o along the pipe perimeter; i.e., the
coefficient @ is assumed constant and equal to its value at the frontal line (the line at the pipe wall which
is parallel to the pipe axis and which lies at the front of the pipe.

Furthermore, the values of o determined by the method of [1] are frequently lower than the actual
values.

The temperature fields in the pipe wall can be determined more rigorously by using local values of
the heat-transfer coefficient along the perimeter and by using the more accurate method of [2, 3] for deter-
mining a.

The dependence of @ on the heat flux to the inner surface and other parameters of the structure and
the process was found for uniformly heated pipes in [2,3]. The experimental data of [4, 5] show that, for
equal local heat fluxes at the inner wall, the heat-transfer coefficients at the frontal line are not the same
" for the cases of uniform and nonuniform heating over the range of volume-averaged flow enthalpies if
= 350-550 kcal/kg. Under these conditions the heat-transfer coefficients are higher in the cdse of non-
uniform heating than in the case of uniform heating. If the heat-transfer coefficient obtained for uniform
heating is used in the boundary condition in a determination of the temperature fields in & nonuniformly
heated pipe wall, the calculated temperature at the frontal wall will be slightly higher than the actual
temperature over the range if = 350~550 kcal/kg.

Turning immediately to the solution of the problem, we note that the steady~-state temperatur:e field
in the pipe wall is described by
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We introduce the quantities a-n = ap. Using (1), we can write the formal solution of Eq. (*) as

t(r,

n==1
Transforming the original equations and boundary conditions,

satisfy

s
Ay =2
25
—1 —n—1
Anrrll —anl" =
(==
r
Ajlnr, - B,= JL o
ra @

k=1

b) == 2 (A, - Byrmcosng - Ay lar 4 B,.

we find that the coefficients Ai and Bj must

In

ni

Ze (At - Byr3?),

@y

(A, it — B ryl) = %E( WEF Bt x

k=1

} Qahoc
X Céh+n'-— OL’
wheren =1, 2,
We introduce the new quantities
Yp = An (Anr;‘#l - Bnr7_n_l)»

L,

n=1, 2,

Then the solution of the problem reduces to the solution of the infinite system of equations
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Since q(y) and @ () can be tabulated, we must calculate the Fourier coefficients for these functions; to do
this we use the quadrature equation with equidistant nodes, based on the algebraic interpolation of [6]:
T
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where h = r/n.

The accuracy of this equation is governed primarily by the accuracy with which the graph of the
function over the integration interval is approximated by a broken line with slope changes at the points
given in the table. If the functions o ~nd q are sufficiently smooth, convergence of the series is ensured,
and the system has a solution, as has been verified in numerical computer "experiments."

In the course of the calculations, a check was made to see that the boundary conditions were satis-
fied for the resulting solution. Use of the tabulated Fourier coefficients in the calculations smooths the
errors in the specification of these functions. An accuracy sufficient for engineering »rposes is achieved
with ~10 terms of the expansion.

The funection q(y) can be determined by the procedure of [7]. The function () can be written as
follows, according to an analysis of numerical calculations on the basis of [3]:
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Fig. 2. Comparison of calculated and experimental
temperatures. The curves are calculated (curves 1

for radius ry and curves 2 for rj) and the points are ex-
perimental. The values of pW [kg/ (m?-sec)], P kg
/cm2), i (kecal/kg), and qg‘ [kcal/(mz'h)], respectively,
are: a: curves) 2000, 260, 340, 0.6-10% 3) 2010, 260,
340, 0.61-10% 4) 2000, 260, 343, 0.595-10%, b: curves)
1000, 260, 350, 0.58-108; 3) 1000, 259, 353, 0.58-106;
4) 940, 259, 350, 0.57-108,
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£ If the flow enthalpy, the pressure, the average-mass velocity, and

the inner pipe diameter are given, the quantity o = f[gi, ()] is a known
function of the heat flux at the inner surface; in turn, we have qjp (gt (ry,
#). Accordingly, « is specified implicitly and is determined from the
equation as a function of the temperature distribution on the inner pipe
wall. Therefore, the problem is solved by the method of successive ap-

Fig. 3. Difference be-
tween the temperature of
the outer front point of the
pipe and the flow tempera-
ture, At = Tyy—T,, as a

function of the enthalpy of proximations.

‘the mediam [P = 260 kg For the first approximation we adopt qfy, (y) = const, where q, can
/em?, pW = 1000 kg/m? be chosen comparatively freely, e.g., qaf,'= qy [do/djp). On the basis of
-sec.] a) qy = 0.4-10° this initially specified value of qf,, we determine a{!) = f(qf,), solve the
keal/(m®-h); b) qf = 0.6 system of equations above, and find the temperature field in the wall,
+108 keal/ (m®-h). Solid tM(r, ¥).

curves) Calculated by the
procedure of the present
paper; dashed) by the pro- a® = f (i),

in
cedure of [1].

Then we calculate
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The calculation is stopped when max |t(i)(r, ) — t(i'l)(r, !l < e; we finally have
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In the range of coolant parameters in which there is an abrupt degradation of heat transfer at the
frontal line, calculations on the basis of these equations may turn out to be unstable, with a finite but un-
damped oscillation of the heat flux. In this case it is necessary to introduce the relaxation time 7 and to
calculate

gD = g7 T [aOF (ry, 9) — g4,

Convergence of the process can be hastened by using a varying relaxation coefficient, choosing it to
vary in the optimum manner on the basis of experiment. '

Calculations carried out by this procedure were compared with experimental data, obtained by I. E.
Semenovker on a PK-41 boiler. The measurements were made on a pipe with do/dj, = 36/20 (Fig. 1).
The pipe temperature was measured at radii ry = 17.5 mm and r; = 21.5 mm in three radial directions at
intervals.of 45°. Points 1 and 2 lie on the direction of maximum heat flux. The relative distribution of
the heat flux over the outer surface of the pipe is shown in Fig. 1b.

Comparison of the calculated temperatures of the pipe metal at r; and ry with the experimental points
(Figs. 2a and 2b) reveals a satisfactory agreement. Figure 3 compares the temperatures in the outer
frontal point of the pipe as determined by the present procedure and by the procedure of [1].

NOTATION
t is the difference between the temperature at a given point of the pipe and the flow tem-
perature;
Ty is the flow temperature;
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is the temperature at the given point of the pipe;

is the flow enthalpy;

is the pressure;

is the heat flux at the frontal point at the outer surface;
is the heat flux at the inner surface of the pipe;

is the heat flux at the outer surface;

is the heat-transfer coefficient;

is the thermal conductivity of pipe material;

is the average-mass flow velocity;

is the outer radius of pipe;

is the inner radius;

are the outer and inner pipe diameters, respectively;
is the angle measured from the frontal point of the tube.
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